1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright 2018, The Gtk-rs Project Developers.
// See the COPYRIGHT file at the top-level directory of this distribution.
// Licensed under the MIT license, see the LICENSE file or <http://opensource.org/licenses/MIT>

use std::mem;
use std::sync::atomic::{AtomicUsize, Ordering};

use futures;
use futures::prelude::*;
use futures::executor::{Executor, SpawnError};
use futures::task::{LocalMap, UnsafeWake, Waker};
use futures::{Async, Future, Never};

use MainContext;
use MainLoop;
use Source;
use Priority;

use get_thread_id;

use ::translate::{from_glib_none, from_glib_full, mut_override, ToGlib};
use ffi as glib_ffi;

// We can't use an enum here because we want to store this in an atomic variable
const INIT: usize = 0;
const NOT_READY: usize = 1;
const READY: usize = 2;
const DONE: usize = 3;

#[repr(C)]
struct TaskSource {
    source: glib_ffi::GSource,
    future: Option<(Box<Future<Item = (), Error = Never>>, Box<LocalMap>)>,
    thread: Option<usize>,
    state: AtomicUsize,
}

unsafe impl UnsafeWake for TaskSource {
    unsafe fn clone_raw(&self) -> Waker {
        Waker::new(glib_ffi::g_source_ref(mut_override(&self.source)) as *const TaskSource)
    }

    unsafe fn drop_raw(&self) {
        glib_ffi::g_source_unref(mut_override(&self.source));
    }

    unsafe fn wake(&self) {
        if self.state
            .compare_and_swap(NOT_READY, READY, Ordering::SeqCst) == NOT_READY
        {
            glib_ffi::g_source_set_ready_time(mut_override(&self.source), 0);
        }
    }
}

unsafe extern "C" fn prepare(
    source: *mut glib_ffi::GSource,
    timeout: *mut i32,
) -> glib_ffi::gboolean {
    let source = &mut *(source as *mut TaskSource);

    *timeout = -1;

    let mut cur = source
        .state
        .compare_and_swap(INIT, NOT_READY, Ordering::SeqCst);
    if cur == INIT {
        // XXX: This is not actually correct, we should not dispatch the
        // GSource here already but we need to know its current status so
        // that if it is not ready yet something can register to the waker
        if let Async::Ready(()) = source.poll() {
            source.state.store(DONE, Ordering::SeqCst);
            cur = DONE;
        } else {
            cur = NOT_READY;
        }
    }

    if cur == READY || cur == DONE {
        glib_ffi::GTRUE
    } else {
        glib_ffi::GFALSE
    }
}

unsafe extern "C" fn check(source: *mut glib_ffi::GSource) -> glib_ffi::gboolean {
    let source = &mut *(source as *mut TaskSource);

    let cur = source.state.load(Ordering::SeqCst);
    if cur == READY || cur == DONE {
        glib_ffi::GTRUE
    } else {
        glib_ffi::GFALSE
    }
}

unsafe extern "C" fn dispatch(
    source: *mut glib_ffi::GSource,
    callback: glib_ffi::GSourceFunc,
    _user_data: glib_ffi::gpointer,
) -> glib_ffi::gboolean {
    let source = &mut *(source as *mut TaskSource);
    assert!(callback.is_none());

    glib_ffi::g_source_set_ready_time(mut_override(&source.source), -1);
    let mut cur = source
        .state
        .compare_and_swap(READY, NOT_READY, Ordering::SeqCst);
    if cur == READY {
        if let Async::Ready(()) = source.poll() {
            source.state.store(DONE, Ordering::SeqCst);
            cur = DONE;
        } else {
            cur = NOT_READY;
        }
    }

    if cur == DONE {
        glib_ffi::G_SOURCE_REMOVE
    } else {
        glib_ffi::G_SOURCE_CONTINUE
    }
}

unsafe extern "C" fn finalize(source: *mut glib_ffi::GSource) {
    let source = source as *mut TaskSource;
    let _ = (*source).future.take();
}

static SOURCE_FUNCS: glib_ffi::GSourceFuncs = glib_ffi::GSourceFuncs {
    check: Some(check),
    prepare: Some(prepare),
    dispatch: Some(dispatch),
    finalize: Some(finalize),
    closure_callback: None,
    closure_marshal: None,
};

impl TaskSource {
    fn new(
        priority: Priority,
        future: Box<Future<Item = (), Error = Never> + 'static + Send>,
    ) -> Source {
        unsafe { Self::new_unsafe(priority, None, future) }
    }

    // NOTE: This does not have the Send bound and requires to be called from the same
    // thread where the main context is running
    unsafe fn new_unsafe(
        priority: Priority,
        thread: Option<usize>,
        future: Box<Future<Item = (), Error = Never> + 'static>,
    ) -> Source {
        let source = glib_ffi::g_source_new(
            mut_override(&SOURCE_FUNCS),
            mem::size_of::<TaskSource>() as u32,
        );
        {
            let source = &mut *(source as *mut TaskSource);
            source.future = Some((future, Box::new(LocalMap::new())));
            source.thread = thread;
            source.state = AtomicUsize::new(INIT);
        }

        glib_ffi::g_source_set_priority(source, priority.to_glib());

        from_glib_full(source)
    }

    fn poll(&mut self) -> Async<()> {
        // Make sure that the first time we're polled that the current thread is remembered
        // and from there one we ensure that we're always polled from exactly the same thread.
        //
        // In theory a GMainContext can be first run from one thread and later from another
        // thread, but we allow spawning non-Send futures and must not ever use them from
        // any other thread.
        match &mut self.thread {
            thread @ &mut None => {
                *thread = Some(get_thread_id());
            }
            &mut Some(thread_id) => {
                assert_eq!(get_thread_id(), thread_id,
                           "Task polled on a different thread than before");
            }
        }

        let waker = unsafe { self.clone_raw() };
        let source = &self.source as *const _;
        if let Some(ref mut future) = self.future {
            let (ref mut future, ref mut local_map) = *future;

            let mut executor: MainContext = unsafe {
                from_glib_none(glib_ffi::g_source_get_context(mut_override(source)))
            };

            assert!(executor.is_owner(), "Polling futures only allowed if the thread is owning the MainContext");

            // Clone that we store in the task local data so that
            // it can be retrieved as needed
            executor.push_thread_default();

            let res = {
                let enter = futures::executor::enter().unwrap();
                let mut context =
                    futures::task::Context::new(local_map, &waker, &mut executor);

                let res = future.poll(&mut context).unwrap_or(Async::Ready(()));

                drop(enter);

                res
            };

            executor.pop_thread_default();
            res
        } else {
            Async::Ready(())
        }
    }
}

impl MainContext {
    /// Spawn a new infallible `Future` on the main context.
    ///
    /// This can be called from any thread and will execute the future from the thread
    /// where main context is running, e.g. via a `MainLoop`.
    pub fn spawn<F: Future<Item = (), Error = Never> + Send + 'static>(&self, f: F) {
        self.spawn_with_priority(::PRIORITY_DEFAULT, f);
    }

    /// Spawn a new infallible `Future` on the main context.
    ///
    /// The given `Future` does not have to be `Send`.
    ///
    /// This can be called only from the thread where the main context is running, e.g.
    /// from any other `Future` that is executed on this main context, or after calling
    /// `push_thread_default` or `acquire` on the main context.
    pub fn spawn_local<F: Future<Item = (), Error = Never> + 'static>(&self, f: F) {
        self.spawn_local_with_priority(::PRIORITY_DEFAULT, f);
    }

    /// Spawn a new infallible `Future` on the main context, with a non-default priority.
    ///
    /// This can be called from any thread and will execute the future from the thread
    /// where main context is running, e.g. via a `MainLoop`.
    pub fn spawn_with_priority<F: Future<Item = (), Error = Never> + Send + 'static>(&self, priority: Priority, f: F) {
        let f = Box::new(f);
        let source = TaskSource::new(priority, f);
        source.attach(Some(&*self));
    }

    /// Spawn a new infallible `Future` on the main context, with a non-default priority.
    ///
    /// The given `Future` does not have to be `Send`.
    ///
    /// This can be called only from the thread where the main context is running, e.g.
    /// from any other `Future` that is executed on this main context, or after calling
    /// `push_thread_default` or `acquire` on the main context.
    pub fn spawn_local_with_priority<F: Future<Item = (), Error = Never> + 'static>(&self, priority: Priority, f: F) {
        assert!(self.is_owner(), "Spawning local futures only allowed on the thread owning the MainContext");
        let f = Box::new(f);
        unsafe {
            // Ensure that this task is never polled on another thread
            // than this one where it was spawned now.
            let source = TaskSource::new_unsafe(priority, Some(get_thread_id()), f);
            source.attach(Some(&*self));
        }
    }

    /// Runs a new, infallible `Future` on the main context and block until it finished, returning
    /// the result of the `Future`.
    ///
    /// The given `Future` does not have to be `Send` or `'static`.
    ///
    /// This must only be called if no `MainLoop` or anything else is running on this specific main
    /// context.
    pub fn block_on<F: Future>(&self, f: F) -> Result<F::Item, F::Error> {
        let mut res = None;
        let l = MainLoop::new(Some(&*self), false);
        let l_clone = l.clone();

        unsafe {
            let f = f.then(|r| {
                res = Some(r);
                l_clone.quit();
                Ok::<(), Never>(())
            });

            let f: *mut Future<Item = (), Error = Never> = Box::into_raw(Box::new(f));
            // XXX: Transmute to get a 'static lifetime here, super unsafe
            let f: *mut (Future<Item = (), Error = Never> + 'static) = mem::transmute(f);
            let f: Box<Future<Item = (), Error = Never> + 'static> = Box::from_raw(f);

            // Ensure that this task is never polled on another thread
            // than this one where it was spawned now.
            let source = TaskSource::new_unsafe(::PRIORITY_DEFAULT, Some(get_thread_id()), f);
            source.attach(Some(&*self));
        }

        l.run();

        res.unwrap()
    }
}

impl Executor for MainContext {
    fn spawn(&mut self, f: Box<Future<Item = (), Error = Never> + Send>) -> Result<(), SpawnError> {
        let f = Box::new(f);
        let source = TaskSource::new(::PRIORITY_DEFAULT, f);
        source.attach(Some(&*self));
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::thread;
    use std::sync::mpsc;
    use futures::future;
    use futures::channel::oneshot;

    #[test]
    fn test_spawn() {
        let c = MainContext::new();
        let l = ::MainLoop::new(Some(&c), false);

        let (sender, receiver) = mpsc::channel();
        let (o_sender, o_receiver) = oneshot::channel();

        let l_clone = l.clone();
        c.spawn(o_receiver
                .map_err(|_| unimplemented!())
                .and_then(move |()| {
                    sender.send(()).unwrap();
                    l_clone.quit();

                    Ok(())
                })
        );

        thread::spawn(move || {
            l.run();
        });

        o_sender.send(()).unwrap();

        let _ = receiver.recv().unwrap();
    }

    #[test]
    fn test_spawn_local() {
        let c = MainContext::new();
        let l = ::MainLoop::new(Some(&c), false);

        c.push_thread_default();
        let l_clone = l.clone();
        c.spawn_local(future::lazy(move |_ctx| {
            l_clone.quit();

            Ok(())
        }));

        l.run();

        c.pop_thread_default();
    }

    #[test]
    fn test_block_on() {
        let c = MainContext::new();

        let mut v = None;
        {
            let v = &mut v;

            let future = future::lazy(|_ctx| {
                *v = Some(123);
                Ok::<i32, ()>(123)
            });

            let res = c.block_on(future);
            assert_eq!(res, Ok(123));
        }

        assert_eq!(v, Some(123));
    }
}