1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use libc::{c_char, c_uchar};
use translate::FromGlib;
use translate::ToGlib;

/// Wrapper for values where C functions expect a plain C `char`
///
/// Consider the following C function prototype from glib:
///
/// ```C
/// void g_key_file_set_list_separator (GKeyFile *key_file, gchar separator);
/// ```
///
/// This function plainly expects a byte as the `separator` argument.  However,
/// having this function exposed to Rust as the following would be inconvenient:
///
/// ```ignore
/// impl KeyFile {
///     pub fn set_list_separator(&self, separator: libc:c_char) { }
/// }
/// ```
///
/// This would be inconvenient because users would have to do the conversion from a Rust `char` to an `libc::c_char` by hand, which is just a type alias
/// for `i8` on most system.
///
/// This `Char` type is a wrapper over an `libc::c_char`, so that we can pass it to Glib or C functions.
/// The check for whether a Rust `char` (a Unicode scalar value) actually fits in a `libc::c_char` is
/// done in the `new` function; see its documentation for details.
///
/// The inner `libc::c_char` (which is equivalent to `i8` can be extracted with `.0`, or
/// by calling `my_char.to_glib()`.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Char(pub c_char);

impl Char {
    /// Creates a `Some(Char)` if the given `char` is representable as an `libc::c_char`
    ///
    /// # Example
    /// ```ignore
    /// extern "C" fn have_a_byte(b: libc::c_char);
    ///
    /// let a = Char::new('a').unwrap();
    /// assert!(a.0 == 65);
    /// have_a_byte(a.to_glib());
    ///
    /// let not_representable = Char::new('☔');
    /// assert!(not_representable.is_none());
    /// ```
    pub fn new(c: char) -> Option<Char> {
        if c as u32 > 255 {
            None
        } else {
            Some(Char(c as c_char))
        }
    }
}

impl From<Char> for char {
    fn from(c: Char) -> char {
        c.0 as u8 as char
    }
}

#[doc(hidden)]
impl FromGlib<c_char> for Char {
    fn from_glib(value: c_char) -> Self {
        Char(value)
    }
}

#[doc(hidden)]
impl ToGlib for Char {
    type GlibType = c_char;

    fn to_glib(&self) -> c_char {
        self.0
    }
}

/// Wrapper for values where C functions expect a plain C `unsigned char`
///
/// This `UChar` type is a wrapper over an `libc::c_uchar`, so that we can pass it to Glib or C functions.
/// The check for whether a Rust `char` (a Unicode scalar value) actually fits in a `libc::c_uchar` is
/// done in the `new` function; see its documentation for details.
///
/// The inner `libc::c_uchar` (which is equivalent to `u8` can be extracted with `.0`, or
/// by calling `my_char.to_glib()`.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct UChar(pub c_uchar);

impl UChar {
    /// Creates a `Some(UChar)` if the given `char` is representable as an `libc::c_uchar`
    ///
    /// # Example
    /// ```ignore
    /// extern "C" fn have_a_byte(b: libc::c_uchar);
    ///
    /// let a = Char::new('a').unwrap();
    /// assert!(a.0 == 65);
    /// have_a_byte(a.to_glib());
    ///
    /// let not_representable = Char::new('☔');
    /// assert!(not_representable.is_none());
    /// ```
    pub fn new(c: char) -> Option<UChar> {
        if c as u32 > 255 {
            None
        } else {
            Some(UChar(c as c_uchar))
        }
    }
}

impl From<UChar> for char {
    fn from(c: UChar) -> char {
        c.0 as char
    }
}

#[doc(hidden)]
impl FromGlib<c_uchar> for UChar {
    fn from_glib(value: c_uchar) -> Self {
        UChar(value)
    }
}

#[doc(hidden)]
impl ToGlib for UChar {
    type GlibType = c_uchar;

    fn to_glib(&self) -> c_uchar {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use translate::from_glib;

    #[test]
    fn converts_single_byte_chars() {
        assert_eq!(Char::new(0 as char), Some(Char(0 as c_char)));
        assert_eq!(Char::new(255 as char), Some(Char(-1 as i8 as c_char)));
        assert_eq!(Char::new('ñ'), Some(Char(241 as u8 as c_char)));
        assert_eq!(UChar::new(0 as char), Some(UChar(0 as c_uchar)));
        assert_eq!(UChar::new(255 as char), Some(UChar(255 as c_uchar)));
        assert_eq!(UChar::new('ñ'), Some(UChar(241 as c_uchar)));
    }

    #[test]
    fn refuses_multibyte_chars() {
        assert_eq!(Char::new('☔'), None); // no umbrella for you
        assert_eq!(UChar::new('☔'), None);
    }

    #[test]
    fn into_i8() {
        assert_eq!(Char::new('A').unwrap().to_glib(), 65 as c_char);
    }

    #[test]
    fn into_u8() {
        assert_eq!(UChar::new('A').unwrap().to_glib(), 65 as c_uchar);
    }

    #[test]
    fn into_char() {
        assert_eq!(char::from(Char(65 as c_char)), 'A');
        assert_eq!('ñ', UChar(241 as c_uchar).into());
    }

    #[test]
    fn convert_from_glib() {
        assert_eq!(Char(65 as c_char), from_glib(65 as c_char));
        assert_eq!(UChar(241 as c_uchar), from_glib(241 as u8 as c_uchar));
    }
}